Residual Viscosity Stabilized RBF-FD Methods for Solving Nonlinear Conservation Laws
نویسندگان
چکیده
Abstract In this paper, we solve nonlinear conservation laws using the radial basis function generated finite difference (RBF-FD) method. Nonlinear have solutions that entail strong discontinuities and shocks, which give rise to numerical instabilities when solution is approximated by a We introduce residual-based artificial viscosity (RV) stabilization framework adjusted RBF-FD method, where residual of law adaptively locates shocks. The RV applied collocation method oversampled Computational tests confirm stabilized methods are reliable accurate in solving scalar systems such as compressible Euler equations.
منابع مشابه
Entropy viscosity method for nonlinear conservation laws
A new class of high-order numerical methods for approximating nonlinear conservation laws is described (entropy viscosity method). The novelty is that a nonlinear viscosity based on the local size of an entropy production is added to the numerical discretization at hand. This new approach does not use any flux or slope limiters, applies to equations or systems supplemented with one or more entr...
متن کاملChebyshev–legendre Spectral Viscosity Method for Nonlinear Conservation Laws∗
In this paper, a Chebyshev–Legendre spectral viscosity (CLSV) method is developed for nonlinear conservation laws with initial and boundary conditions. The boundary conditions are dealt with by a penalty method. The viscosity is put only on the high modes, so accuracy may be recovered by postprocessing the CLSV approximation. It is proved that the bounded solution of the CLSV method converges t...
متن کاملEntropy-based nonlinear viscosity for Fourier approximations of conservation laws
An Entropy-based nonlinear viscosity for approximating conservation laws using Fourier expansions is proposed. The viscosity is proportional to the entropy residual of the equation (or system) and thus preserves the spectral accuracy of the method. To cite this article: J.-L. Guermond, R. Pasquetti, C. R. Acad. Sci. Paris, Ser. I 346 (2008). © 2008 Académie des sciences. Published by Elsevier M...
متن کاملChebyshev–legendre Super Spectral Viscosity Method for Nonlinear Conservation Laws∗
In this paper, a super spectral viscosity method using the Chebyshev differential operator of high order Ds = ( √ 1− x2∂x) is developed for nonlinear conservation laws. The boundary conditions are treated by a penalty method. Compared with the second-order spectral viscosity method, the super one is much weaker while still guaranteeing the convergence of the bounded solution of the Chebyshev–Ga...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Scientific Computing
سال: 2022
ISSN: ['1573-7691', '0885-7474']
DOI: https://doi.org/10.1007/s10915-022-02055-8